11 research outputs found

    Creating an illusion of movement between the hands using mid-air touch

    Get PDF
    Apparent tactile motion (ATM) has been shown to occur across many contiguous parts of the body, such as fingers, forearms and the back. More recently, the illusion has also been elicited on non-contiguous part of the body, such as from one hand to the other when interconnected or not interconnected by an object in between the hands. Here we explore the reproducibility of the intermanual tactile illusion of movement between two free hands by employing mid-air tactile stimulation. We investigate the optimal parameters to generate a continuous and smooth motion using two arrays of ultrasound speakers, and two stimulation techniques (i.e. static vs. dynamic focal point). In the first experiment, we investigate the occurrence of the illusion when using a static focal point, and we define a perceptive model. In the second experiment, we examine the illusion using a dynamic focal point, defining a second perceptive model. Finally, we discuss the differences between the two techniques

    LeviSense: a platform for the multisensory integration in levitating food and insights into its effect on flavour perception

    Get PDF
    Eating is one of the most multisensory experiences in everyday life. All of our five senses (i.e. taste, smell, vision, hearing and touch) are involved, even if we are not aware of it. However, while multisensory integration has been well studied in psychology, there is not a single platform for testing systematically the effects of different stimuli. This lack of platform results in unresolved design challenges for the design of taste-based immersive experiences. Here, we present LeviSense: the first system designed for multisensory integration in gustatory experiences based on levitated food. Our system enables the systematic exploration of different sensory effects on eating experiences. It also opens up new opportunities for other professionals (e.g., molecular gastronomy chefs) looking for innovative taste-delivery platforms. We describe the design process behind LeviSense and conduct two experiments to test a subset of the crossmodal combinations (i.e., taste and vision, taste and smell). Our results show how different lighting and smell conditions affect the perceived taste intensity, pleasantness, and satisfaction. We discuss how LeviSense creates a new technical, creative, and expressive possibilities in a series of emerging design spaces within Human-Food Interaction

    The how and why behind a multisensory art display

    Get PDF
    Designing multisensory experiences has always fascinated artists and scientists alike. In recent years, there has been a growing interest in multisensory experience design within the HCI community [1]. Next to advances in haptic technologies, we see novel work on olfactory and gustatory systems [2,3] and efforts in determining multisensory design spaces [4]. Moreover, artists, museum curators, and creative industries are interested in those emerging technologies for their own work. Here we present Tate Sensorium, a multisensory art display, as an example case for multisensory design

    TastyFloats: a contactless food delivery system

    Get PDF
    We present two realizations of TastyFloats, a novel system that uses acoustic levitation to deliver food morsels to the users’ tongue. To explore TastyFloats’ associated design framework, we first address the technical challenges to successfully levitate and deliver different types of foods on the tongue. We then conduct a user study, assessing the effect of acoustic levitation on users’ taste perception, comparing three basic taste stimuli (i.e., sweet, bitter and umami) and three volume sizes of droplets (5µL, 10µL and 20µL). Our results show that users perceive sweet and umami easily, even in minimal quantities, whereas bitter is the least detectable taste, despite its typical association with an unpleasant taste experience. Our results are a first step towards the creation of new culinary experiences and innovative gustatory interfaces
    corecore